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Abstract— This paper presents a stochastic model for 

generation expansion planning in a power system with network 

constraints and uncertain demand. A DC representation of the 

network is assumed. To make the problem computationally 

feasible when applied to the Spanish power system, a bi-level 

Benders decomposition has been developed. The main results of 

this application prove the robustness and the efficiency of the 

planning in comparison with other deterministic solutions. 

Outputs are the capacity to install of each technology (including 

renewable assets) in each year and in each Spanish Autonomous 

Community. The convergence of the Benders algorithm has also 

been tested. 

 

Keywords—Generation expansion planning, Benders 

decomposition, stochastic optimization, network constraints, RES 

integration. 
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NOMENCLATURE 

Indices  

t Technologies 

a Years 

n, m Nodes 

s Stochastic scenarios 

l,j  Benders iterations 

  

Model parameters 

ϕ Discount rate (%) 

CIt,a Investment cost (€/MW) 

CPt,a Production cost (€/MWh) 

CNQ Cost of non-supply demand (€/MWh) 

Dn,a, Dn,s,a Inelastic demand at node n (MWh) 

Sn,a, Sn,s,a 

International exchanges at node n. Positive 

values are imports (MWh) 

C
U

t,a Capacity of each unit of technology t (MW) 

Qt,n,a 

Maximum capacity to install of technology t 

by year a (MW) 

Qn,m,a Capacity of the transmission lines (MW) 

Q
I
t,n Initial install capacity of technology t (MW) 

Dit,n,a 

Outage rate of each technology t. It also 

models the utilization factor for renewable 

technologies (p.u.) 

Cit,n,a 

Annual closure rate of plants of each 

technology t that were planned before the 

first planning year (p.u.) 

Xn,m,a Reactance of line n to m (p.u.) 

Pn,s,a Probability of each demand scenario (%) 

  

BD algorithm parameters 

 
j
 

BD cut’s type for each iteration 

(0=feasibility cuts,1=optimality cuts) 

RF
j
 Sub-problem objective value (€) 

 
j
t,n,s,a 

Dual variable of the maximum production 

constraint (€/MWh) 

QA
j
t,n,a Cumulative installed capacity (MW) 

NG 
j
t,n,a Number of units to install (1,..,) 

L, U
 

Lower and upper BD bounds (€) 

ε Benders tolerance (%) 

IT Benders maximum iterations (1,..,) 

 

Continuous variables 
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c, mc, sc 
Problem, master problem and sub-problem 

total costs (€) 

rf() Benders resource function (€) 

fn,m,a, fn,m,s,a 

Power flow from node n to m. Positive 

values are imports (MW) 

n,a, n,s,a Phase angle at node n (rad) 

qpt,n,a, qpt,n,s,a Production of technology t (MWh) 

qit,n,a, qit,n,s,a New installed capacity (MW) 

qat,n,a, qat,n,s,a Cumulative installed capacity (MW) 

nqn,a, nqn,s,a Non-supply demand at node n (MWh) 

cmn,a, cmn,s,a Marginal cost at node n (MWh) 

 

Integer variables 

ngt,n,a 

Number of units to install of technology t 

(1,..,) 

 

I. INTRODUCTION 

The aim of long-term generation expansion problems, in the 

framework of power systems, consists in selecting the most 

adequate technologies to invest in, the amount of new 

generation capacity to install, and the sites for building the 

new generation plants. To do so, physical, geographical and 

economic criteria must be applied while ensuring that the total 

installed capacity adequately meets the expected demand in a 

long-term horizon. 

Several approaches and techniques for the generation 

expansion problem are proposed in the literature, but can be 

classified under two main groups: models for liberalized 

systems (see [1] for a review), and models that assume 

centralized systems, sometimes just to avoid the complexity of 

oligopolistic modeling (see [2] and [3]). Within the first group 

(see [4] for a deeper classification of this group), several 

models consider the optimization of only one company, 

leading to MPEC structures ([5]). For example, [6] obtains an 

MPEC that represents the static bi-level capacity expansion 

problem of a company when the demand is uncertain. 

Investments and productions are decided in the upper level, 

while the lower level clears the market. The problem of one 

company, comparing Cournot and Stackelberg approaches 

([7]), is analyzed in [8] taking into account hydro and pumped-

hydro constraints. Reference [9] describes a bi-level model for 

the investment decisions of one company assuming a perfectly 

competitive market, and considering uncertainty not only in 

the demand but also in the competitors’ generation capacities. 

A generation planning model is proposed in [10] when several 

agents are competing. To find a solution, [10] assumes a 

centralized entity in charge of the evaluation of each company 

planning in an iterative process. Each evaluation provides 

information regarding the competitors’ behavior, which is used 

to maximize all the profit functions in the sense of Nash. 

Reference [11] presents a generation planning involving 

decisions on new units’ construction by applying a Cournot 

model ([12]) at a single point in time. 

EPEC structures ([13]) appears also in expansion models 

under competition. Reference [14] proposes an EPEC for the 

generation expansion considering one future year, which is 

linearized and solved using Mixed Integer Linear 

Programming ([15]). In [16] two bi-levels expansion problems 

are proposed under perfect and Cournot competitions, 

discussing existence and uniqueness issues. An EPEC that 

takes into account hydro power, demand and competitors 

investments uncertainty is described in [1]. Other realistic 

details such as the introduction of capacity mechanisms for 

financial hedging are also considered in [1]. 

The second group (centralized models) is very well studied 

in the literature (see [2] for metaheuristic techniques to solve 

the involved models, encompassing Genetic Algorithms, 

Expert Systems, Fuzzy Programming, Artificial Neural 

Networks, Analytic Hierarchy Processes, Network Flows, and 

Simulated Annealing). Unlike the game-based models of the 

first group (for liberalized systems), these centralized models 

can easily consider transmission network constraints 

(equilibrium existence is typically lost in game-based models 

including these constraints, see [17]). In [18] a robust 

generation expansion planning is obtained considering a set of 

probable demand scenarios. A MPEC model is presented in 

[19] to obtain the generation investments in the upper level by 

minimizing total costs, subject to a lower level for the market 

clearing under different load and wind conditions. References 

[3], [20] and [21] describe several multiobjective models for 

the expansion planning, obtaining Pareto solutions when cost, 

environmental impact and several types of risks are optimized 

simultaneously by a centralized entity. 

In general, the main limitations in capacity expansion models 

are the size and complexity of the problems to be solved. 

These two aspects depend on both the horizon and the degree 

of detail with which the system is represented
1
. To solve this, 

different resolution methods consisting in splitting the problem 

in subproblems solved by stages, have been proposed. The 

method most used is Benders Decomposition (BD; see [22] 

and the annex for a review), that can be applied when the 

problem to be solved has a special block structure. Under this 

structure, BD is able to divide a very dense problem into 

different linked subproblems, and obtain the optimal solution 

iteratively. The model structure required to apply BD is often 

presented in applications that lead to stochastic programming, 

as it is the case of this paper. 

Different applications of BD to electric power systems can 

be found in the literature. In [23] a model that combines the 

application of Genetic Algorithms and BD is proposed for the 

capacity expansion problem. Although this model takes into 

account the availability of the generation units, it does not 

consider uncertainty in the inputs. In [24] BD is applied to 

solve transmission expansion planning. Generation expansion 

is not optimized in this case. BD is also applied in [25] to 

optimize the capacity expansion when considering some 

probabilistic reliability constraints. The operation for a fixed 

capacity is optimized in the subproblem, while optimal 

 
1Models for liberalized system also have an additional drawback related 

with the complexity of the equilibrium conditions to be solved. 
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capacity investments with yearly transversal constraints result 

from the master problem. 

 In this paper, a model for planning capacity expansion 

considering stochastic demand is proposed. A robust 

expansion plan against this uncertainty is obtained, similarly to 

[18] but considering the effect of network constraints. Only the 

expansion in generation technologies is modeled. Therefore, 

transmission lines capacities are considered inputs (see [24] 

for a possible extension to transmission expansion). As in the 

centralized models reviewed (see for example [8]), the model 

minimizes the expected total system cost, taking into account 

investment and expected operation costs. The main results are 

the total capacity to install, which is given by technology and 

node, the flows along each transmission line, the production of 

each technology and the electricity marginal cost at each node. 

The main contribution of this paper is the application of the 

proposed model to the Spanish electric system, considering 

each Spanish Autonomous Community (CA)
2
 as a node of the 

network, estimating the thermal limits of each line based on 

historical data from different public web pages, and their 

reactance based on [26]. Though Spanish market does not has 

nodal prices, our model can serve as a valid representation of 

the daily-ahead Spanish market when combined with the 

impact of the technical constraints market ([27]). For 

computational reasons, a bi-level BD is used to solve the 

proposed application, where investments decisions are 

optimized in the master problem while generation units 

operation is solved in the sub-problem. 

This paper is organized as follows. Section II presents the 

formulation of the proposed generation expansion model 

without considering demand uncertainty, and when this 

uncertainty is included in the model. Section III exposes the 

application of the bi-level BD technique to the model. Section 

IV analyses a realistic case study. Finally, some conclusions 

are presented in the last section. The annex describes the 

mathematical formulation and an overview of the bi-level BD 

technique applied. 

 

II. THE GENERATION EXPANSION PROBLEM WITH NETWORK 

CONSTRAINTS 

A. The deterministic case 

If the demand is deterministic and unitary durations for each 

year are assumed (hereinafter by simplicity), the objective 

function of the proposed model consists in the minimization of 

the present value of the total system cost: 

 

 
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

  
 

(1) 

 
2The Autonomous Communities (CCAA) are the first-level political 

division of the Kingdom of Spain, established in accordance with the Spanish 

Constitution. 

 

where:  

 

 The first term is the total investment cost, computed as 

the product of the unitary investment cost CIt,n,a and the 

installed capacity, which is the number ngt,n,a of units to 

be installed multiplied by the capacity C
U

t,a of each unit. 

 The second term represents the total production cost 

computed as the product of the unitary production cost 

CPt,a and the production qpt,n,a. 

 Finally, the third term represents the cost of the non-

supplied demand nqn,a. 

 

The optimization problem must be solved subject to the 

following constraints: 

 

 
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n m a

f
X
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(5) 

, , , , , ,n m a n m a n m aQ f Q  

 

(6) 

 

where: 

 

 (2) calculates the accumulated installed capacity qat,n,a, 

taking into account Cit,n,a, the annual closure rate of 

plants that were planned before the first planning year. 

 (3) is the maximum production constraint of the 

generation units, taking into account the availability 

rate Dit,n,a of each technology. This rate also models the 

utilization factor for renewable technologies. 

Constraint (3) is essential since it relates investment 

and operation decisions, which in turns complicates 

significantly the resolution. 

 (4) is the balance between generation and demand 

considering the international power exchanges and the 

power flows modeled. The dual variables of these 

constraints provide the marginal cost cmn,a at each node 

n. 

 (5) calculates the transmission lines power flow fn,m,a 

along the line (n,m), as a function of the reactance xn,m,a 

and the phase angles n,a and m,a. A reference phase 

angle ref,a must be chosen such that ref,a=0. Each angle 

must be also upper bounded by 2 rad. 

 Finally (6) models the thermal limits of the power flows 

fn,m,a. 

 



 

 

4 

B. Stochastic case: uncertain demand 

The above minimization problem can be extended to the case 

of uncertain demand by minimizing the present value of the 

following expected objective function: 

 

 
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(7) 

 

Indeed, to obtain robust capacities to install, different 

demand scenarios Dn,s,a with different probabilities Pn,s,a are 

considered, although the number ngt,n,a of units to be installed 

must not depend on index s. On the contrary, the rest of 

variables depend on s since they are referred to the system 

operation, which is different for each demand scenario. 

Apart from (2), the following constraints must be taken into 

account in the stochastic model (instead of (3), (4), (5) and 

(6)): 

 

, , , , , , ,0 t n s a t n a t n aqp qa Di    (8) 

, , , , , , , , , , , , ,, :t n s a m n s a n s a n s a n s a
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(9) 

, , , ,

, , ,

, ,
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n m s a

n m a

f
X

 
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(10) 

, , , , , , ,n m a n m s a n m aQ f Q  

 

(11) 

 

III. BD APPLIED TO THE CAPACITY EXPANSION PROBLEM 

WITH NETWORK CONSTRAINTS 

Based on (8), a decomposition model that separates the 

investment and operational decisions is described in this 

section. The main advantage of this approach is that two 

separated smaller problems can be solved instead of the 

original one, which is sometimes too large to be solved with 

conventional tools. 

 

A. Formulation 

This subsection presents the formulation of a bi-level BD for 

the model described in II.B (see the annex for the 

mathematical details). To do so, the model has been 

decomposed as follows: 

 

 Investment decisions ngt,n,a and qat,n,a are optimized in the 

master problem. 

 Productions qpt,n,s,a, flows fn,m,s,a and phase angles n,s,a are 

optimized in the sub-problem. 

 

In particular, the master problem objective is: 

 

 
 , , , , , ,

,

1
  ,

1

U

t n a t n a t n aa
a t n

Min mc CI ng C rf ng qa


   


   
(12) 

 

where rf(ng,qa) is the well-known resources function in BD 

literature, which depends on the master problem decisions 

(ng,qa)=(ngt,n,a,qat,n,a, t,n,a). 

Function rf(ng,qa) is approximated by variable rf, an outer 

approximation using optimality or feasibility cuts (see the 

annex for more details). If j
 is a boolean parameter that 

identifies if a BD cut is an optimality cut (j
=1) or a feasibility 

cut (j
 =0), at each iteration j, then rf is obtained using all the 

cuts until iteration l, from the following linear equations, that 

must be embedded in the master problem: 

 

  , , , , , , ,

, , ,

     1,.., -1j j j j

t n s a t n a t n a

t n s a

rf RF qa QA j l      
 

(13) 

 

Apart from these cut constraints, additional restrictions that 

must be taken into account in the master problem are (2). 

The objective of the sub-problem is the resource function 

rf(ng,qa) expressed as: 
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(14) 

 

At each iteration l, the sub-problem constraints are (8), (9), 

(10) and (11) fixing variables (ng,qa) at their optimal values 

from the master problem. Note that since the subproblem 

constraints do not link variables from different years, each year 

can be solved independently. 

The following subsection describes with more detail this 

iterative process. 

 

B. Algorithm 

The BD’s iterative process to solve the proposed expansion 

model can be described with the following pseudo-code
3
: 

 

1. Parameters initialization: 

 l=1. 

 L=-, U=. 

 

2. Solve the master problem including (2) and the cuts 

of (13). Do: 

 NG
l
t,n,a=ng.Lt,n,a 

 QA
l
t,n,a=qa.Lt,n,a 

 L=rf.L 

 

3. Solve the sub-problem including (8), (9), (10) and 

(11), and fixing vector (ng,qa) as follows: 

 ngt,n,a=NG
l
t,n,a 

 qat,n,a=QA
l
t,n,a 

 

4. New cut building: 

 
3“X.L” has been used to refer to the optimal value of variable X. 
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 If the sub-problem is unfeasible: 

o Set  
l
=0 

o Solve the following sub-problem to analyze 

the infactibility of the subproblem: 

 

, , ,

, , ,

, , , , , , , , , ,

  

. .            

t n s a

t n s a

t n s a t n s a t n a t n a

Min sp a

s t qp a qa Di



  

  
(15) 

                                    (9), (10) and (11) 

 

o RF
l
=sp.L 

o l
t,n,s,a=dual variables of the first constraints of 

(15). 

 else 

o Set  
l
=1 

o RF
l
=sc.L 

o U=Min(U, RF
l
) 

o l
t,n,s,a=dual variables of (8). 

 

5. Proof of convergence: if 1-(L/U)≤ε or l=IT then end. 

Otherwise, go to step 2. 

IV. CASE STUDY 

A. System and case description 

The case study consists in the application of the proposed 

model to the Spanish electric system in 2011, considering a 

time horizon of 9 years (from 2012 to 2020). The lifespan of 

the plants to be installed has been neglected since it is typically 

higher than the length of the horizon. It has been assumed that 

the demand must be completely satisfied, i.e., variables nqn,a 

and nqn,s,a have been fixed to zero in all the executions. 

The Spanish system in 2011 was composed by 82 thermal 

units which, for this case, have been aggregated in 4 thermal 

technologies (Nuclear, Coil, Fuel and Combined Cycle). Two 

additional renewable technologies have been also considered 

(Wind and Solar; Solar including photovoltaic and thermal). 

These technologies have been located in 15 nodes of the 

considered power grid, each node representing a Spanish 

peninsular CA. The values of the initial install capacity Q
I
t,n 

are shown in Table I for each technology and have been 

obtained from reports of the Spanish system operator. 

 
TABLE I: INITIAL INSTALLED CAPACITY 

(MW) 

N
u

c
le

a
r

C
o

il

F
u

e
l

C
o

m
b

in
e
d

 C
y

c
le

W
in

d

S
o

la
r

Andalucia 0 2051 308 4790 3126 1447

Aragon 0 1342 0 1798 1814 133

Asturias 0 2628 0 0 491 1

Castilla-La mancha 1066 221 948 774 3647 1017

Castilla Leon 466 2707 0 0 5279 393

Cataluña 3142 160 1570 2440 1205 201

C. Valenciana 1085 0 0 2791 1139 274

Extremadura 1957 0 0 0 0 963

Galicia 0 2031 470 1180 3173 12

La Rioja 0 0 0 790 428 69

Murcia 0 0 578 3261 251 345

Navarra 0 0 0 1187 939 130

Pais Vasco 0 217 936 1949 147 22

Cantabria 0 0 0 0 34 2

Madrid 0 0 0 0 0 52  

 

The demand scenarios Dn,s,a to be satisfied using the 

considered technologies (that is, Dn,s,a is the total demand 

minus the productions with hydro, pumping and cogeneration 

technologies) are based on the historical demand of 2011, 

increased at an annual rates of 1.6% and 2.6% for 2014 and 

2015 respectively and of 6% from 2016 onward. Historical 

annual rate for 2012 and 2013 due the economical crisis were -

2.4 and -2.3% respectively. Table II shows the three demand 

scenarios considered based on the demand of 2011. They have 

been labeled as MED, MAX, MIN to identify the cases of 

medium (MED, demand of 2011), high (MAX, 1.35 times 

MED) and low demand (MIN, 0.65 times MED) values, 

respectively. 

 
TABLE II: DEMAND SCENARIOS (MWH/H) 

MAX MED MIN

Andalucia 8550 6333 4117

Aragon 2362 1750 1137

Asturias 1785 1322 859

Castilla-La mancha 5602 4150 2697

Castilla y Leon 5523 4091 2659

Cataluña 7634 5655 3676

C. Valenciana 5085 3767 2448

Extremadura 995 737 479

Galicia 4395 3256 2116

La Rioja 625 463 301

Murcia 1469 1088 707

Navarra 1331 986 641

Pais Vasco 2690 1993 1295

Cantabria 524 388 252

Madrid 4536 3360 2184  

 

The probability Pn,s,a of each demand scenario has been 

supposed constant over the time horizon, and independent of 

each CA, being 25%, 50% and 25% for the MAX, MED and 

MIN demand scenarios respectively.  

The values for the maximum capacity of the transmission 

network lines have been estimated based on historical data 

from different public web pages (see Table IV). The network 

is depicted in Fig. 1. 

 
TABLE IV: MAXIMUM CAPACITY OF TRANSMISSION NETWORK (MW) 

A
n

d
a

lu
c
ia

A
r
a

g
o

n

A
st

u
r
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s

C
a

st
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a
 m

a
n

c
h
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C
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st
il
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 y

 L
e
o

n

C
a

ta
lu

ñ
a

C
. 
V

a
le

n
c
ia

n
a

E
x

tr
e
m

a
d

u
r
a

G
a

li
c
ia

L
a

 R
io

ja

M
u

r
c
ia

N
a

v
a

r
r
a

P
a

is
 V

a
sc

o

C
a

n
ta

b
r
ia

M
a

d
r
id

Andalucia -     -     -     550 -     -     -     100 -     -     200 -     -     -     -     

Aragon -     -     -     200 50   550 250 -     -     -     -     200 -     -     -     

Asturias -     -     -     -     550 -     -     -     50   -     -     -     -     250 -     

Castilla-La mancha 550 200 -     -     125 -     150 550 -     -     500 -     -     -     5000

Castilla y Leon -     50   550 125 -     -     -     250 450 250 -     -     3500 250 2000

Cataluña -     550 -     -     -     -     450 -     -     -     -     -     -     -     -     

C. Valenciana -     250 -     150 -     450 -     -     -     -     600 -     -     -     -     

Extremadura 100 -     -     550 250 -     -     -     -     -     -     -     -     -     -     

Galicia -     -     50   -     450 -     -     -     -     -     -     -     -     -     -     

La Rioja -     -     -     -     250 -     -     -     -     -     -     350 250 -     -     

Murcia 200 -     -     500 -     -     600 -     -     -     -     -     -     -     -     

Navarra -     200 -     -     -     -     -     -     -     350 -     -     150 -     -     

Pais Vasco -     -     -     -     3500 -     -     -     -     250 -     150 -     200 -     

Cantabria -     -     250 -     250 -     -     -     -     -     -     -     200 -     -     

Madrid -     -     -     5000 2000 -     -     -     -     -     -     -     -     -     -      
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Fig. 1: Considered Spanish network 

 

Table V presents the reactance of each line (upper diagonal 

matrix), estimated based on the air distance (lower diagonal 

matrix) among the capitals of each CA, and using a standard 

reactance value of 0.01729 pu/100km for 400kV lines (from 

[26]). Therefore, for simplicity, it has been assumed that each 

line in the equivalent electrical network has a similar reactance 

to a single line of 400kV. The reference angle is “Castilla y 

Leon” in the Northwest of Spain, with a large number of 

CCAA in its neighborhood. 

 
TABLE V: REACTANCE AND DISTANCES (P.U. AND KM) 
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Andalucia - - 0.06 - - - 0.03 - - 0.06 - - - -

Aragon - - 0.06 0.06 0.04 0.04 - - - - 0.02 - - -

Asturias - - - 0.04 - - - 0.01 - - - - 0.03 -

Castilla-La mancha 324 331 - 0.04 - 0.05 0.04 - - 0.06 - - - 0.01

Castilla y Leon - 319 212 208 - - 0.06 0.06 0.04 - - 0.04 0.04 0.03

Cataluña - 257 - - - 0.05 - - - - - - - -

C. Valenciana - 246 - 316 - 304 - - - 0.03 - - - -

Extremadura 173 - - 226 335 - - - - - - - - -

Galicia - - 50 - 343 - - - - - - - - -

La Rioja - - - - 209 - - - - - 0.01 0.01 - -

Murcia 320 - - 326 - - 177 - - - - - - -

Navarra - 138 - - - - - - - 76 - 0.01 - -

Pais Vasco - - - - 215 - - - - 48 - 85 0.02 -

Cantabria - - 165 - 215 - - - - - - - 114 -

Madrid - - - 68 162 - - - - - - - - -  
 

Investments and operation costs have been estimated based 

on public sources, assuming an annual increase rate of 2%, 

equal to the discount rate ϕ (Table VI). 

 
TABLE VI: INVESTMENT (€/MW) AND PRODUCTION COSTS (€/MWH) 

Investment Production

Nuclear 1500000 9.27

Coil 850000 65.65

Fuel 750000 75.26

Combined Cycle 450000 59

Wind 1200000 0

Solar 1700000 0  

 

Historical international exchanges in 2011 at each node are 

shown in Table VII (obtained from the Spanish system 

operator). Expected international exchanges for the years of 

the planning horizon have been assumed to be equal to those 

of 2011. 

 
TABLE VII: INTERNATIONAL EXCHANGES OF 2011 (MWH/H) 

Andalucia -513

aragon -37

Castilla y Leon -28

Cataluña 105

Extremadura 119

Galicia -412

Pais Vasco 71  

 

The utilization factors of wind and solar technologies have 

been fixed to 0.43 and 0.4 p.u. respectively, which can be 

computed from historical data.  

 

A. Investment planning: stochastic versus deterministic 

Fig. 2 shows the investment planning obtained from the 

stochastic model described in subsection II.B. 
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Fig. 2: Stochastic expansion planning by technologies 

 

Note that decommissions for groups installed before 2012 

have been modeled (see the resulting fuel evolution), coherent 

with the current generation technologies trend. Fig. 2 also 

shows the large increment of the installed capacity of wind 

technology due to its utilization factor and investment cost, in 

comparison with solar. To satisfy the demand, combined cycle 

plants are also installed at the end of the horizon because they 

recover more costs for the remaining years of the horizon than 

wind farms, reflecting a very common problem of finite 

horizon planning. To overcome this drawback, long-term 

planning analysis with infinite periods is currently being 

studied by the authors. 

Fig. 3 shows the total investment planning obtained from the 

stochastic model and compared to the corresponding for the 

three scenarios optimized using the deterministic model 

described in subsection II.A. 
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Fig. 3: Comparison between the stochastic and the deterministic total 

expansion planning 
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As can be seen from Fig. 3, the expansion planning of the 

stochastic model is very similar to the deterministic model for 

MED, anticipating that MED has the higher probability to 

occur (50%). Planning costs are 178393.5, 105788.1, 45560 

M€ for MAX, MED and MIN respectively, and 121901.8 M€ 

for the stochastic solution. This is quite sensible since 

stochastic planning is a robust solution against the demand 

uncertainty, and therefore it has a higher cost than MED (and 

obviously MIN), but lesser than MAX, since this last consider 

a high demand scenario with probability 1, which requires too 

large investments. 

An average nodal marginal cost can be computed by 

weighting the nodal marginal cost of each scenario (MAX, 

MED and MIN) with the probability of each scenario. Fig. 4 

compares those obtained from the deterministic and stochastic 

resolution approaches by representing their difference. In 

addition, a black line represents the average of these 

differences weighted by the demand Dn,a of each node. As can 

be seen the stochastic model leads to a more efficient solution, 

since these average values trend is positive. 
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Fig. 4: Marginal costs differences between the stochastic and the 

deterministic cases 

 

B. Network investments 

This subsection shows that network investments should be in 

accordance with generation investments, to avoid non-supplied 

demands, but also to take advantages from CCAA climatology. 

To do so, a large solar penetration is assumed in Andalucía, 

consisting in installing 300 solar groups each year of the 

horizon. Under this scenario, Table VI presents the number of 

installed groups planned by the stochastic model. 

 

TABLE VI: NUMBER OF SOLAR PLANTS IN ANDALUCÍA 
2012 2013 2014 2015 2016 2017 2018 2019 2020

Andalucia solar 300 300 300 300 300 300 300 300 300

Aragon wind 300

Asturias wind 183

Cantabria wind 156

Castilla y Leon ccycle 1 1 2 2

wind 300 300

Castilla la Mancha ccycle 4 1 2 3 2

coil 1

wind 300 218

Cataluña ccycle 1 2 2

wind 300 300 1

C. Valenciana ccycle 1 1

wind 300 300

Galicia ccycle 1 1

wind 300 227 1

La Rioja wind 95

Madrid ccycle 1

wind 300 300

Murcia wind 127

Navarra wind 151

Pais Vasco ccycle 1

wind 300  
 

From Table VI, additional groups are installed in the rest of 

CCAA since imports from Andalucía are bounded by the 

maximum thermal limits of the lines departing from Andalucía 

to other CCAA. This means that enforcements in such lines 

should be planned for a more efficient planning. 

Fig. 5 presents the corresponding marginal costs cmn,s,a in 

Andalucía. As can be seen, prices tend to zero due to the high 

penetration of the solar technology (even leading to spills). 
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Fig. 5: Andalucía marginal costs vs. new installed solar plants  

 

C. BD algorithm convergence 

The executions were run on a 64-bit Inter-Core CPU at 3.4 

GHz, programmed in Gams (http://www.gams.com/) and 

solved using Cplex solver. The problem with all the hours of 

each year without BD was too large and could not be solved 

(computer run out of memory). When applying BD a solution 

was achieved in 99 iterations, with a total execution time of 

approximately 2 days and 3 hours. Fig. 6 shows the lower and 

upper bounds of BD algorithm (L and U respectively) at each 

iteration of the algorithm.  
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Fig. 6: Evolution of BD algorithm 

 

V. CONCLUSIONS 

This paper proposes a generation expansion planning model 

to obtain usable signals for investors in generation assets when 

the electricity demand is uncertain and DC network constraints 

without losses are considered. These signals provide the 

capacity to install and the nodes to locate it for each generation 

technology. 

By considering uncertainty in the demand of the Spanish 

system, the model has been applied to a simplified network 

where each node is a Spanish Autonomous Community. 

Equivalent lines characteristics have been inferred from past 

historic data. The portfolio includes wind and solar 

technologies, which have proved to be more competitive than 

thermal ones, although back-up thermal investments of 

renewable generation have not been taken into account. Other 

results of this application prove the robustness and efficiency 

of the stochastic solution, and also provide insights about the 

necessary investments in the network when a large amount of 

renewable generation is installed. It has been also tested that 

the case study cannot be solved using conventional techniques. 

BD decomposition is used to solve this drawback. 

Future developments may be oriented to apply this 

methodology for a more recent and longer time horizon, to 

consider network lines investments for a combined generation 

and transmission plan, and to improve the power network 

representation. 

 

ANNEX: BENDERS DECOMPOSITION 

Bi-level BD is used for solving a large-scale problem by 

means of partitioning it into two separated problems: a master 

problem (linear, non-linear, and continuous or integer 

problem) and a sub-problem (linear problem). This partition 

can be realized by temporal periods, spatial units or scenarios 

[22]. 

The problems’ structure for which BD can be applied is the 

following: 
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(16) 

 

where c(x) and T(x) are functions of x, d and h are vectors, W 

is a matrix, and X and Y sets of constraints on x and y 

respectively, being Y a polyhedron. First block of constraints 

correspond to the well-known coupled constraints between x 

and y. 

This problem can be represented as a bi-level optimization 

problem as follows [28]: 
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(17) 

 

(x) being the resources function, which is proved to be 

convex ([28]). The optimization problem in the first level is 

named master problem, while the second level contains the 

sub-problem. 

Since (x) (second level) is not known a priori, Benders 

proposes an iterative approximation of (x) by using outer 

linear functions at each iterative solution x
l
 of the master 

problem (first level). Each linear function or optimality cut on 

(x) at x
l
 has the following slope: 
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Therefore, the optimality cuts are: 

 

  l l l l
T x x x      (19) 

 

The following scheme describes the iterative algorithm 

proposed by Benders: 
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Fig. 7: Benders algorithm 

 

This iterative process converges when the approximation of 

the recourse function (x) is sufficiently good (that is, when 
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the optimal value of variable  in the master problem is similar 

to j
 for some j obtained in the subproblem). 

Nevertheless, sometimes the subproblem is unfeasible when 

fixing a particular solution x
l
 of the master problem (tipically 

due to the sign of the right-hand side of the subproblem 

constraints). In this case, it is necessary to broadcast to the 

master problem feasibility cuts instead of optimality cuts. 

These new cuts are obtained by minimizing the infeasibilities 

of the subproblem, i.e.: 
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Min  
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 (20) 

 

I being the identity matrix and e a vector of unitary values. 

Since x
l
 makes the subproblem unfeasible then 

l
=(x

l
)>0. To 

avoid x
l
 in the following iteration, a linear approximation of 

(x) is iteratively built (as with (x)) isolating x
l
 by imposing 

the following linear cut (the feasibility cut): 

 

  0
l l l l

T x x x     (21) 

 

These cuts are very similar to the optimality cuts (see (19)) but 

when approximating (x) instead of (x). Since at the end of 

the algorithm (x) needs to be zero (to avoid infeasibilities), 

left-hand side of (21) is fixed to a null value, which is the main 

difference respect to the optimality cuts. The final BD 

algorithm introducing these feasibility cuts is similar to the one 

described in Fig. 7 except that now the master problem would 

include these cuts at each iteration when the subproblem is 

unfeasible. 
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